Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Aero-Nef
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
CATALANI Giovanni
Aero-Nef
Commits
105ac06a
Commit
105ac06a
authored
6 months ago
by
CATALANI Giovanni
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
f3e555c7
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
INR/regression_coral.py
+103
-0
103 additions, 0 deletions
INR/regression_coral.py
with
103 additions
and
0 deletions
INR/regression_coral.py
0 → 100644
+
103
−
0
View file @
105ac06a
import
os
import
sys
from
pathlib
import
Path
import
matplotlib.pyplot
as
plt
from
sklearn.metrics
import
mean_squared_error
sys
.
path
.
append
(
str
(
Path
(
__file__
).
parents
[
1
]))
import
time
import
hydra
import
numpy
as
np
import
torch
import
torch.nn
as
nn
from
omegaconf
import
DictConfig
from
coral.utils.models.load_inr
import
create_inr_instance
from
dataset
import
*
# Function to load a model
def
load_model
(
model_weights
,
cfg
,
input_dim
,
output_dim
):
# ... load the INR model from model_path using the configuration cfg
# load inr weights
inr_in
=
create_inr_instance
(
cfg
,
input_dim
=
input_dim
,
output_dim
=
output_dim
,
device
=
"
cuda
"
)
inr_in
.
load_state_dict
(
model_weights
)
inr_in
.
eval
()
return
inr_in
@hydra.main
(
config_path
=
""
,
config_name
=
"
regression.yaml
"
)
def
main
(
cfg
:
DictConfig
)
->
None
:
inr_cfg
=
cfg
.
inr_cfg
target_field
=
inr_cfg
.
target_field
print
(
f
"
Processing target field:
{
target_field
}
"
)
dir
=
os
.
path
.
dirname
(
__file__
)
input_inr
=
torch
.
load
(
os
.
path
.
join
(
dir
,
inr_cfg
.
model_path
))
cfg_single
=
input_inr
[
'
cfg
'
]
num_points
=
None
add_cond_in
=
False
if
cfg_single
.
inr_in
.
add_cond_in
is
None
else
cfg_single
.
inr_in
.
add_cond_in
# Create dataset instance
dataset
=
TransonicRAE
(
cfg
.
data_directory
,
target_field
,
add_cond_in
=
add_cond_in
,
num_points
=
num_points
)
dataset
.
create_splits
(
train_ratio
=
0.9
,
val_ratio
=
0.05
,
test_ratio
=
0.05
,
seed
=
42
)
ntest
=
len
(
dataset
.
test_dataset
)
# Improved folder naming with timestamp and all output target fields
timestamp
=
time
.
strftime
(
"
%Y%m%d-%H%M%S
"
)
folder_name
=
f
"
training_resilt_
{
timestamp
}
"
results_directory
=
os
.
path
.
join
(
dir
+
'
/trainings
'
,
folder_name
)
os
.
makedirs
(
results_directory
,
exist_ok
=
True
)
cfg_save_path
=
os
.
path
.
join
(
results_directory
,
'
config.yaml
'
)
torch
.
save
(
cfg
,
cfg_save_path
)
# Predict outputs for test dataset
result_test
=
{
'
predictions
'
:
{},
'
targets
'
:
{},
'
mse
'
:
{},
'
cond
'
:
{}}
cfg_single
=
torch
.
load
(
os
.
path
.
join
(
dir
,
inr_cfg
.
model_path
))[
'
cfg
'
]
if
cfg_single
.
inr_in
.
global_norm
:
min_val
,
max_val
=
dataset
.
coef_norm
[
'
min
'
],
dataset
.
coef_norm
[
'
max
'
]
else
:
mean_val
,
std_val
=
dataset
.
coef_norm
[
'
mean
'
],
dataset
.
coef_norm
[
'
std
'
]
inr_model
=
load_model
(
torch
.
load
(
os
.
path
.
join
(
dir
,
inr_cfg
.
model_path
))[
"
inr_in
"
],
cfg_single
,
inr_cfg
.
input_dim
,
inr_cfg
.
output_dim
)
inr_model
.
eval
()
result_test
[
'
predictions
'
][
inr_cfg
.
target_field
]
=
[]
result_test
[
'
targets
'
][
inr_cfg
.
target_field
]
=
[]
result_test
[
'
mse
'
][
inr_cfg
.
target_field
]
=
[]
result_test
[
'
cond
'
][
inr_cfg
.
target_field
]
=
[]
for
substep
,
graph
in
enumerate
(
dataset
.
test_dataset
):
if
cfg_single
.
inr_in
.
global_norm
:
pred
=
inr_model
.
modulated_forward
(
graph
.
input
.
cuda
(),
graph
.
cond
.
cuda
()).
detach
().
cpu
()
*
(
max_val
-
min_val
)
+
min_val
target
=
graph
.
output
*
(
max_val
-
min_val
)
+
min_val
else
:
pred
=
inr_model
.
modulated_forward
(
graph
.
input
.
cuda
(),
graph
.
cond
.
cuda
()).
detach
().
cpu
()
*
(
std_val
)
+
mean_val
target
=
graph
.
output
*
(
std_val
)
+
mean_val
mse
=
((
pred
.
numpy
()
-
target
.
numpy
())
**
2
).
mean
(
axis
=
0
)
result_test
[
'
predictions
'
][
inr_cfg
.
target_field
].
append
(
pred
.
numpy
())
result_test
[
'
targets
'
][
inr_cfg
.
target_field
].
append
(
target
.
numpy
())
result_test
[
'
mse
'
][
inr_cfg
.
target_field
].
append
(
mse
)
result_test
[
'
cond
'
][
inr_cfg
.
target_field
].
append
(
graph
.
cond
.
numpy
())
# Save the outputs
outputs_save_path
=
os
.
path
.
join
(
results_directory
,
'
result_test.pt
'
)
torch
.
save
(
result_test
,
outputs_save_path
)
print
(
"
Outputs predicted and saved at:
"
,
outputs_save_path
)
print
(
'
Mean mse total:
'
,
sum
(
result_test
[
'
mse
'
][
inr_cfg
.
target_field
])
/
len
(
result_test
[
'
mse
'
][
inr_cfg
.
target_field
]))
if
__name__
==
"
__main__
"
:
main
()
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment