Skip to content
Snippets Groups Projects
Commit 6a848392 authored by MARCON Cecile's avatar MARCON Cecile
Browse files

fixed import on inftype and sigparam

parent a5d8f406
No related branches found
No related tags found
No related merge requests found
......@@ -36,9 +36,11 @@ Import ListNotations.
(** This module implements bigraphs and basic operations on bigraphs *)
Module Bigraphs (sp : SignatureParameter) (np : InfType).
Import sp.
Import np.
Module s := Signature sp.
Module n := infTs np.
Include s.
Import s.
Import n.
(** * Definition of a bigraph
This section defines the Type bigraph *)
......@@ -72,7 +74,7 @@ Definition get_control {s r : nat} {i o : NoDupList} (bg : bigraph s i r o) : ge
@control s i r o bg.
Definition get_parent {s r : nat} {i o : NoDupList} (bg : bigraph s i r o) : (get_node bg) + (ordinal s) -> (get_node bg) + (ordinal r) :=
@parent s i r o bg.
Definition get_link {s r : nat} {i o : NoDupList} (bg : bigraph s i r o) : {inner:np.infT | In inner i} + Port (@get_control s r i o bg) -> {outer:np.infT | In outer o} + (get_edge bg) :=
Definition get_link {s r : nat} {i o : NoDupList} (bg : bigraph s i r o) : {inner:infT | In inner i} + Port (@get_control s r i o bg) -> {outer:infT | In outer o} + (get_edge bg) :=
@link s i r o bg.
Definition get_ap {s r : nat} {i o : NoDupList} (bg : bigraph s i r o) : FiniteParent (get_parent (bg:=bg)) :=
@ap s i r o bg.
......@@ -95,7 +97,7 @@ Theorem parent_proof_irrelevant {s i r o} (b:bigraph s i r o):
Qed.
Theorem innername_proof_irrelevant {s i r o} (b:bigraph s i r o):
forall n:np.infT, forall Hn: In n i, forall Hn':In n i,
forall n:infT, forall Hn: In n i, forall Hn':In n i,
get_link (bg:=b) (inl (exist _ n Hn)) = get_link (bg:=b) (inl (exist _ n Hn')).
Proof.
intros. apply f_equal. apply f_equal. apply subset_eq_compat. reflexivity.
......@@ -278,7 +280,7 @@ Definition symmetry_big (m:nat) (X:NoDupList) (n:nat) (Y:NoDupList) :
destruct n'.
Defined.
Definition substitution (i:NoDupList) (name:np.infT) : bigraph 0 i 0 (OneelNDL name).
Definition substitution (i:NoDupList) (name:infT) : bigraph 0 i 0 (OneelNDL name).
Proof.
apply (@Big 0 i 0 (OneelNDL name)
void (*node : *)
......@@ -293,10 +295,10 @@ Definition substitution (i:NoDupList) (name:np.infT) : bigraph 0 i 0 (OneelNDL n
destruct n'.
Defined.
Definition elementary_renaming (n n':np.infT) := substitution (OneelNDL n) n'.
Definition elementary_renaming (n n':infT) := substitution (OneelNDL n) n'.
Definition closure (name:np.infT) : bigraph 0 (OneelNDL name) 0 EmptyNDL.
Definition closure (name:infT) : bigraph 0 (OneelNDL name) 0 EmptyNDL.
Proof.
apply (@Big 0 (OneelNDL name) 0 EmptyNDL
void (*node : *)
......
......@@ -8,18 +8,16 @@ Require Import FunctionalExtensionality.
Require Import MathCompAddings.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq fintype finfun.
(** * This module implements a signature
It contains a Module Type with Kappa and Arity, and Ports built from the Signature *)
Module Type SignatureParameter.
Parameter Kappa : eqType.
(* Parameter EqDecK : forall x y : Kappa, {x = y} + {x <> y}. *)
Parameter Arity : Kappa-> nat.
End SignatureParameter.
Module Signature (SP:SignatureParameter).
Include SP.
Module Signature (SParam:SignatureParameter).
Import SParam.
Definition Port {node : Type} (control : node -> Kappa): Type :=
{ n : node & 'I_(Arity (control n)) }.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment