diff --git a/doc/config_files/config_simulation_plume.yaml b/doc/config_files/config_simulation_plume.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..6f091711a2b7fe7b4bf9a249d79356143669c137
--- /dev/null
+++ b/doc/config_files/config_simulation_plume.yaml
@@ -0,0 +1,74 @@
+####################
+#    SIMULATION    #
+####################
+simClass: Plume
+GPU: True
+sim_method: convnet # Choose between convnet and CG (as reference)
+
+#Field saving options
+save_field: True
+save_field_x_ite: 10
+save_post_x_ite: 10
+
+#Plot options
+plot_field: True
+plot_x_ite: 50
+
+#Post-computations options
+post_computations: False
+
+out_dir: './output/dir/'
+
+####################
+# PHYSICAL FORCES  #
+####################
+Richardson: 0.1
+gravity: 1.0
+gravity_x: 0
+gravity_y: 1
+
+####################
+#  DISCRETIZATION  #
+####################
+Nx: 128 #[] number of control volumes in x direction
+Ny: 128 #[] number of control volumes in y direction
+Nt: 1000 #[] number of time steps to simulate
+
+# CFL
+CFL: 0.2
+
+
+####################
+#    SOLVER IA     #
+####################
+ite_transition: 0
+network_params:
+  load_path: '/path/to/neurasim/trained_networks/lt_nograd_4_16/Unet_lt_nograd_4_16/'
+  model_name: 'Unet_lt_nograd_4_16'
+  new_train: 'new'
+
+####################
+#  NORMALIZATION   #
+####################
+normalization:
+  normalize: True
+  scale_factor: 10.0
+  debug_folder: './results/debug/'
+
+####################
+#     GEOMETRY     #
+####################
+#Domain
+Lx: 128
+Ly: 128
+
+#BC
+BC_domain_x: OPEN
+BC_domain_y: STICKY
+
+#Cilinder
+cylinder: False
+D: 10
+yD: 150
+input_rad: 0.145
+input_vel: 1.0
\ No newline at end of file
diff --git a/doc/config_files/config_simulation_plume_cyl.yaml b/doc/config_files/config_simulation_plume_cyl.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..f10fe35f1a0033739663902613f7305e20811ed4
--- /dev/null
+++ b/doc/config_files/config_simulation_plume_cyl.yaml
@@ -0,0 +1,72 @@
+####################
+#    SIMULATION    #
+####################
+simClass: Plume
+GPU: True
+sim_method: convnet # Choose between convnet and CG (as reference)
+
+#Field saving options
+save_field: True
+save_field_x_ite: 10
+save_post_x_ite: 10
+
+#Plot options
+plot_field: True
+plot_x_ite: 50
+
+#Post-computations options
+post_computations: False
+
+out_dir: './output/dir/'
+
+####################
+# PHYSICAL FORCES  #
+####################
+Richardson: 0.1
+gravity: 1.0
+gravity_x: 0
+gravity_y: 1
+
+####################
+#  DISCRETIZATION  #
+####################
+Nx: 128 #[] number of control volumes in x direction
+Ny: 128 #[] number of control volumes in y direction
+Nt: 1000 #[] number of time steps to simulate
+# CFL
+CFL: 0.2
+
+####################
+#    SOLVER IA     #
+####################
+ite_transition: 0
+network_params:
+  load_path: '/path/to/neurasim/trained_networks/lt_nograd_4_16/Unet_lt_nograd_4_16/'
+  model_name: 'Unet_lt_nograd_4_16'
+  new_train: 'new' # Option to read networks trained with older versions, not to be modified in this scope
+
+####################
+#  NORMALIZATION   #
+####################
+normalization:
+  normalize: True
+  scale_factor: 10.0
+  debug_folder: './results/debug/'
+
+####################
+#     GEOMETRY     #
+####################
+#Domain
+Lx: 128
+Ly: 128
+
+#BC
+BC_domain_x: OPEN
+BC_domain_y: STICKY
+
+#Cilinder
+cylinder: True
+D: 20
+yD: 80
+input_rad: 0.145
+input_vel: 1.0
\ No newline at end of file
diff --git a/doc/config_files/config_simulation_vk.yaml b/doc/config_files/config_simulation_vk.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..22b2c33b230a03491820caf057d7403ddb0ccf64
--- /dev/null
+++ b/doc/config_files/config_simulation_vk.yaml
@@ -0,0 +1,70 @@
+
+####################
+#    SIMULATION    #
+####################
+simClass: VonKarman_rotative
+GPU: True
+sim_method: convnet # Choose between convnet and CG (as reference)
+
+#Field saving options
+save_field: True
+save_field_x_ite: 50
+save_post_x_ite: 50
+
+#Plot options
+plot_field: True
+plot_x_ite: 50
+
+#Post-computations options
+post_computations: True
+
+out_dir: './output/dir/'
+
+####################
+# PHYSICAL FORCES  #
+####################
+Reynolds: 100.0
+Alpha: 0.0 # Rotating dimensionless parameter!
+
+####################
+#  DISCRETIZATION  #
+####################
+Nx: 896 #[] number of control volumes in x direction
+Ny: 608 #[] number of control volumes in y direction
+Nt: 10000 #[] number of time steps to simulate
+
+# CFL
+CFL: 0.2
+
+
+####################
+#    SOLVER IA     #
+####################
+ite_transition: 0
+network_params:
+  load_path: '/path/to/neurasim/trained_networks/lt_nograd_4_16/Unet_lt_nograd_4_16/'
+  model_name: 'Unet_lt_nograd_4_16'
+  new_train: 'new' # Option to read networks trained with older versions, not to be modified in this scope
+
+####################
+#  NORMALIZATION   #
+####################
+normalization:
+  normalize: True
+  scale_factor: 10.0
+  debug_folder: './results/debug/'
+
+####################
+#     GEOMETRY     #
+####################
+#Domain
+Lx: 300
+Ly: 200
+
+#BC
+BC_domain_x: OPEN
+BC_domain_y: STICKY
+
+#Cilinder
+D: 10
+xD: 100
diff --git a/doc/config_files/config_train.yaml b/doc/config_files/config_train.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..b3c31c6410244067de7c46de6c1cf4417fee26ac
--- /dev/null
+++ b/doc/config_files/config_train.yaml
@@ -0,0 +1,200 @@
+# Configuration file with default parameters.
+# Some can be modified through the command line. See help function for training
+# script and README.md for more info.
+# This table is saved to disk (as pytorch objects) on every epoch
+# so that simulations can be paused and restarted.
+#=========================================
+#   MODEL
+#=========================================
+
+#=========================================
+#   DATA
+#=========================================
+# dataDir : Dataset location
+dataDir: "/absolute/path/to/data/datasets/"
+# dataset : Dataset name. Folder inside dataDir with training and testing scenes
+dataset: "dataset_name"
+# numWorkers : number of parallel workers for dataloader. Set to 0 to allow PyTorch
+# to automatically manage loading.
+numWorkers: 3
+# If true, dataset is preprocessed and programs exists.
+# Preprocessing is automatic if no previous preproc is detected on current dataset.
+preprocOriginalFluidNetDataOnly: false
+# shuffleTraining : Shuffles dataset
+shuffleTraining: true
+
+
+#=========================================
+#   OUTPUT
+#=========================================
+# modelDir : Output folder for trained model and loss log.
+modelDir: "/absolute/path/to/save/your/model/modelname"
+# modelFilename : Trained model name
+modelFilename: "convModel"
+
+#=========================================
+#   TRAINING MONITORING
+#=========================================
+
+# freqToFile : Epoch frequency for loss output to file/image saving.
+freqToFile: 25
+# printTraining : Debug options for training.
+# Prints or shows validation dataset and compares net
+# output to GT.
+# Options: save (save figures), show (shows in windows), none
+printTraining: "save"
+
+#=========================================
+#   TRAINING PARAMETER
+#=========================================
+batchSize: 64
+# maxEpochs : Maximum number of epochs
+maxEpochs: 1000
+# resume : resume training from checkpoint.
+resumeTraining: false
+modelParam:
+    # model : options ('FluidNet', 'ScaleNet')
+    #   -FluidNet : uses the architecture found in lib/model.py (based on FluidNet)
+    #   -ScaleNet : uses a multiscale architecture found in lib/multi_scale_net.py
+    model: "ScaleNet"
+
+    # inputChannels : Network inputs. At least one of them must be set to true!
+    inputChannels:
+        div: true
+        pDiv: false
+        UDiv: false
+    # lr : learning rate. If using scientific notation, necessary to precise type
+    # for yaml->python cast.
+    lr: !!python/float 5e-5
+    # fooLambda : Weighting for each loss. Set to 0 to disable loss.
+    # MSE of pressure
+    pL2Lambda: 0
+    # MSE of divergence (Ground truth is zero divergence)
+    divL2Lambda: 1
+    # Absolute difference of pressure
+    pL1Lambda: 0
+    # Absolute difference of divergence
+    divL1Lambda: 0
+    # MSE of long term divergence
+    # If > 0, implements the Long Term divergence concept from FluidNet
+    divLongTermLambda: 5
+    # Differentiable long term loss, or ordinary lt (data augmentation)
+    ltGrad: false
+    # longTermDivNumSteps : We want to measure what the divergence is after
+    # a set number of steps for each training and test sample. Set table
+    # to nil to disable, (or set longTermDivLambda to 0).
+    longTermDivNumSteps:
+        - 2
+        - 4
+    # longTermDivProbability is the probability that longTermDivNumSteps[0]
+    # will be taken, otherwise longTermDivNumSteps[1] will be taken with
+    # probability of 1 - longTermDivProbability.
+    longTermDivProbability: 0.9
+    # normalizeInput : if true, normalizes input by max(std(chan), threshold)
+    normalizeInput: true
+    # normalizeInputChan : which channel to calculate std
+    normalizeInputChan: "UDiv"
+    # normalizeInputThreshold : don't normalize input noise
+    normalizeInputThreshold: 0.00001
+    # normalizing scale factor
+    scale_factor: 10
+    # Dictionary for normalization
+    normalization:
+        normalize: True
+        scale_factor: 10.0
+        debug_folder: "/absolute/path/for/debugging"
+
+    #=========================================
+    #   PHYSICAL PARAMETERS
+    #=========================================
+    # Time step: default simulation timestep.
+    dt: 0.1
+    # Resolution of domain (it must match the data coming from the data loader!)
+    nnx: 128
+    nny: 128
+    # ONLY APPLIED IF LONG TERM DIV IS ACTIVATED
+    #  ----------------------------------
+    # buoyancyScale : Buoyancy forces scale
+    # gravityScale : Gravity forces scale
+    # Note: Manta and FluidNet divide gravity forces into "gravity" and "buoyancy"
+    # They represent the two terms arising from Boussinesq approximation
+    # rho*g = rho_0*g + delta_rho*g
+    #           (1)         (2)
+    # rho_0 being the average density and delta_rho local difference of density
+    # w.r.t average density.
+    # Mantaflow calls (1) gravity and (2) buoyancy and allows for different g's
+    buoyancyScale: 0
+    gravityScale: 0
+    # Gravity vector: Direction of gravity Vector
+    gravityVec:
+        x: 0
+        y: 0
+        z: 0
+    # training buoyancy scale : This is the buoyancy to use when adding buoyancy
+    # to the long term training. It will be applied in a random cardinal direction.
+    trainBuoyancyScale: 0. #2.0
+    # training buoyancy probability : This is the probability to add buoyancy when
+    # long term training.
+    trainBuoyancyProb: 0. #0.3
+    # training gravity scale : This is the gravity to use when adding gravity
+    # to the long term training. It will be applied in a random cardinal direction.
+    trainGravityScale: 2.0
+    # training gravity probability : This is the probability to add buoyancy when
+    # long term training.
+    trainGravityProb: 0.3
+    # ------------------------------------
+    # Introduces a correcting factor in the denisty equation
+    # from "A splitting method for incompressible flows with variable
+    # density based on a pressure Poisson equation" (Guermond, Salgado).
+    # Not really tested... Recommendation is to leave it as false.
+    correctScalar: false
+    # operatingDensity : When applying buoyancy, buoyancyScale is multiplied
+    # by (density(i,j) - operatingDensity)
+    operatingDensity: 0.0
+    # viscosity : introduces a viscous term in moment equation.
+    # Algortihm taken from the book "Fluid Simulation for Computer Graphics" by
+    # Bridson
+    viscosity: 0
+    # timeScaleSigma : Amplitude of time scale perturb during training.
+    timeScaleSigma: 1
+    # maccormackStrength : used in semi-lagrangian MacCormack advection
+    # when LT div is activated. 0.6 is a good value. If ~1, can lead to
+    # high frequency artifacts.
+    maccormackStrength: 0.6
+    # sampleOutsideFluid : if true, allows particles in advection to 'land' inside
+    # obstacles. In general, we don't want that, so leave it as false to avoid
+    # possible artifacts.
+    sampleOutsideFluid: false
+
+    #=========================================
+    #   SIMULATION PARAMETERS
+    #=========================================
+    sim_phi:
+        # GPU utilization
+        GPU: True
+        # Domain Discretization
+        Nx: 128 #[] number of control volumes in x direction
+        Ny: 128 #[] number of control volumes in y direction
+        Nt: 1 #[] number of time steps to simulate
+        #Domain
+        Lx: 128 #[m]  or in mm in consistently changed
+        Ly: 128 #[m]
+        # CFL
+        CFL: 0.2
+        # time
+        dt: 1
+        # Choose between network and CG, set to NN for the training
+        sim_method: 'convnet' # CG or convnet
+        # Network normalization and debugging
+        normalization:
+            normalize: True
+            scale_factor: 10.0
+            debug_folder: "/absolute/path/for/debugging"
+        # Network to load for lt simulations (matches the network been trained)
+        network_params:
+            load_path: "/absolute/path/where/model/is/saved"
+            model_name: 'modelname'
+            new_train: 'new' # Legacy option to be deleted
+        # For debugging purposes
+        in_dir: './'
+        out_dir: './'